skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Treu, T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present new time delays, the main ingredient of time delay cosmography, for 22 lensed quasars resulting from high-cadencer-band monitoring on the 2.6 m ESO VLT Survey Telescope and Max-Planck-Gesellschaft 2.2 m telescope. Each lensed quasar was typically monitored for one to four seasons, often shared between the two telescopes to mitigate the interruptions forced by the COVID-19 pandemic. The sample of targets consists of 19 quadruply and 3 doubly imaged quasars, which received a total of 1918 hours of on-sky time split into 21 581 wide-field frames, each 320 seconds long. In a given field, the 5-σdepth of the combined exposures typically reaches the 27thmagnitude, while that of single visits is 24.5 mag – similar to the expected depth of the upcoming Vera-Rubin LSST. The fluxes of the different lensed images of the targets were reliably de-blended, providing not only light curves with photometric precision down to the photon noise limit, but also high-resolution models of the targets whose features and astrometry were systematically confirmed inHubbleSpace Telescope imaging. This was made possible thanks to a new photometric pipeline,lightcurver, and the forward modelling methodSTARRED. Finally, the time delays between pairs of curves and their uncertainties were estimated, taking into account the degeneracy due to microlensing, and for the first time the full covariance matrices of the delay pairs are provided. Of note, this survey, with 13 square degrees, has applications beyond that of time delays, such as the study of the structure function of the multiple high-redshift quasars present in the footprint at a new high in terms of both depth and frequency. The reduced images will be available through the European Southern Observatory Science Portal. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. ABSTRACT This is the second in a series of papers in which we use JWST Mid Infrared Instrument multiband imaging to measure the warm dust emission in a sample of 31 multiply imaged quasars, to be used as a probe of the particle nature of dark matter. We present measurements of the relative magnifications of the strongly lensed warm dust emission in a sample of nine systems. The warm dust region is compact and sensitive to perturbations by populations of haloes down to masses $$\sim 10^6$$ M$$_{\odot }$$. Using these warm dust flux-ratio measurements in combination with five previous narrow-line flux-ratio measurements, we constrain the halo mass function. In our model, we allow for complex deflector macromodels with flexible third- and fourth-order multipole deviations from ellipticity, and we introduce an improved model of the tidal evolution of subhaloes. We constrain a WDM model and find an upper limit on the half-mode mass of $$10^{7.6}\, {\rm M}_\odot$$ at posterior odds of 10:1. This corresponds to a lower limit on a thermally produced dark matter particle mass of 6.1 keV. This is the strongest gravitational lensing constraint to date, and comparable to those from independent probes such as the Ly $$\alpha$$ forest and Milky Way satellite galaxies. 
    more » « less
  3. We have measured the redshifts and single-aperture velocity dispersions of eight lens galaxies using the data collected by the Echellette Spectrograph and Imager (ESI) and Low Resolution Imaging Spectrometer (LRIS) at W.M. Keck observatory on different observing nights spread over three years (2018–2020). These results, combined with other ancillary data, such as high-resolution images of the lens systems, and time delays, are necessary to increase the sample size of the quasar-galaxy lens systems for which the Hubble constant can be measured, using the time-delay strong lensing method, hence increasing the precision of its inference. Typically, the 2D spectra of the quasar-galaxy lens systems get spatially blended due to seeing by ground-based observations. As a result, the extracted lensing galaxy (deflector) spectra become significantly contaminated by quasar light, which affects the ability to extract meaningful information about the deflector. To account for spatial blending and extract less contaminated and higher signal-to-noise ratio (S/N) 1D spectra of the deflectors, a forward modeling method has been implemented. From the extracted spectra, we have measured redshifts using prominent absorption lines and single aperture velocity dispersions using the penalized pixel fitting code pPXF. In this paper, we report the redshifts and single aperture velocity dispersions of eight lens galaxies – J0147+4630, B0445+123, B0631+519, J0659+1629, J0818−2613, J0924+0219, J1433+6007, and J1817+2729. Among these systems, six do not have previously measured velocity dispersions; for the other two, our measurements are consistent with previously reported values. Additionally, we have measured the previously unknown redshifts of the deflectors in J0818−2613 and J1817+2729 to be 0.866 ± 0.002 and 0.408 ± 0.002, respectively. 
    more » « less
  4. When strong gravitational lenses are to be used as an astrophysical or cosmological probe, models of their mass distributions are often needed. We present a new, time-efficient automation code for the uniform modeling of strongly lensed quasars withGLEE, a lens-modeling software for multiband data. By using the observed positions of the lensed quasars and the spatially extended surface brightness distribution of the host galaxy of the lensed quasar, we obtain a model of the mass distribution of the lens galaxy. We applied this uniform modeling pipeline to a sample of nine strongly lensed quasars for which images were obtained with the Wide Field Camera 3 of theHubbleSpace Telescope. The models show well-reconstructed light components and a good alignment between mass and light centroids in most cases. We find that the automated modeling code significantly reduces the input time during the modeling process for the user. The time for preparing the required input files is reduced by a factor of 3 from ~3 h to about one hour. The active input time during the modeling process for the user is reduced by a factor of 10 from ~ 10 h to about one hour per lens system. This automated uniform modeling pipeline can efficiently produce uniform models of extensive lens-system samples that can be used for further cosmological analysis. A blind test that compared our results with those of an independent automated modeling pipeline based on the modeling softwareLenstronomyrevealed important lessons. Quantities such as Einstein radius, astrometry, mass flattening, and position angle are generally robustly determined. Other quantities, such as the radial slope of the mass density profile and predicted time delays, depend crucially on the quality of the data and on the accuracy with which the point spread function is reconstructed. Better data and/or a more detailed analysis are necessary to elevate our automated models to cosmography grade. Nevertheless, our pipeline enables the quick selection of lenses for follow-up and further modeling, which significantly speeds up the construction of cosmography-grade models. This important step forward will help us to take advantage of the increase in the number of lenses that is expected in the coming decade, which is an increase of several orders of magnitude. 
    more » « less
  5. ABSTRACT While the direct detection of the dark-matter particle remains very challenging, the nature of dark matter could be possibly constrained by comparing the observed abundance and properties of small-scale sub-galactic mass structures with predictions from the phenomenological dark-matter models, such as cold, warm, or hot dark matter. Galaxy-galaxy strong gravitational lensing provides a unique opportunity to search for tiny surface-brightness anomalies in the extended lensed images (i.e. Einstein rings or gravitational arcs), induced by possible small-scale mass structures in the foreground lens galaxy. In this paper, the first in a series, we introduce and test a methodology to measure the power spectrum of such surface-brightness anomalies from high-resolution Hubble Space Telescope (HST) imaging. In particular, we focus on the observational aspects of this statistical approach, such as the most suitable observational strategy and sample selection, the choice of modelling techniques, and the noise correction. We test the feasibility of the power-spectrum measurement by applying it to a sample of galaxy-galaxy strong gravitational lens systems from the Sloan Lens ACS Survey, with the most extended, bright, high-signal-to-noise-ratio lensed images, observed in the rest-frame ultraviolet. In the companion paper, we present the methodology to relate the measured power spectrum to the statistical properties of the underlying small-scale mass structures in the lens galaxy and infer the first observational constraints on the sub-galactic matter power spectrum in a massive elliptical (lens) galaxy. 
    more » « less
  6. ABSTRACT Stringent observational constraints on the subgalactic matter power spectrum would allow one to distinguish between the concordance ΛCDM and the various alternative dark-matter models that predict significantly different properties of mass structure in galactic haloes. Galaxy–galaxy strong gravitational lensing provides a unique opportunity to probe the subgalactic mass structure in lens galaxies beyond the Local Group. Here, we demonstrate the first application of a novel methodology to observationally constrain the subgalactic matter power spectrum in the inner regions of massive elliptical lens galaxies on 1–10 kpc scales from the power spectrum of surface-brightness anomalies in highly magnified galaxy-scale Einstein rings and gravitational arcs. The pilot application of our approach to Hubble Space Telescope (HST/WFC3/F390W) observations of the SLACS lens system SDSS J0252+0039 allows us to place the following observational constraints (at the 99 per cent confidence level) on the dimensionless convergence power spectrum $$\Delta ^{2}_{\delta \kappa }$$ and the standard deviation in the aperture mass σAM: $$\Delta ^{2}_{\delta \kappa }\lt 1$$ (σAM < 0.8 × 108 M⊙) on 0.5-kpc scale, $$\Delta ^{2}_{\delta \kappa }\lt 0.1$$ (σAM < 1 × 108 M⊙) on 1-kpc scale and $$\Delta ^{2}_{\delta \kappa }\lt 0.01$$ (σAM < 3 × 108 M⊙) on 3-kpc scale. These first upper-limit constraints still considerably exceed the estimated effect of CDM subhaloes. However, future analysis of a larger sample of galaxy–galaxy strong lens systems can substantially narrow down these limits and possibly rule out dark-matter models that predict a significantly higher level of density fluctuations on the critical subgalactic scales. 
    more » « less
  7. ABSTRACT The flux ratios of gravitationally lensed quasars provide a powerful probe of the nature of dark matter. Importantly, these ratios are sensitive to small-scale structure, irrespective of the presence of baryons. This sensitivity may allow us to study the halo mass function even below the scales where galaxies form observable stars. For accurate measurements, it is essential that the quasar’s light is emitted from a physical region of the quasar with an angular scale of milliarcseconds or larger; this minimizes microlensing effects by stars within the deflector. The warm dust region of quasars fits this criterion, as it has parsec-size physical scales and dominates the spectral energy distribution of quasars at wavelengths greater than 10 μm. The JWST Mid-Infrared Instrument is adept at detecting redshifted light in this wavelength range, offering both the spatial resolution and sensitivity required for accurate gravitational lensing flux ratio measurements. Here, we introduce our survey designed to measure the warm dust flux ratios of 31 lensed quasars. We discuss the flux-ratio measurement technique and present results for the first target, DES J0405-3308. We find that we can measure the quasar warm dust flux ratios with 3 per cent precision. Our simulations suggest that this precision makes it feasible to detect the presence of 107 M⊙ dark matter haloes at cosmological distances. Such haloes are expected to be completely dark in cold dark matter models. 
    more » « less
  8. ABSTRACT We report the spectroscopic follow-up of 175 lensed quasar candidates selected using Gaia Data Release 2 observations following Paper III of this series. Systems include 86 confirmed lensed quasars and a further 17 likely lensed quasars based on imaging and/or similar spectra. We also confirm 11 projected quasar pairs and 11 physical quasar pairs, while 25 systems are left as unclassified quasar pairs – pairs of quasars at the same redshift, which could be either distinct quasars or potential lensed quasars. Especially interesting objects include eight quadruply imaged quasars of which two have BAL sources, an apparent triple, and a doubly lensed LoBaL quasar. The source redshifts and image separations of these new lenses range between 0.65–3.59 and 0.78–6.23 arcsec, respectively. We compare the known population of lensed quasars to an updated mock catalogue at image separations between 1 and 4 arcsec, showing a very good match at z < 1.5. At z > 1.5, only 47 per cent of the predicted number are known, with 56 per cent of these missing lenses at image separations below 1.5 arcsec. The missing higher redshift, small-separation systems will have fainter lensing galaxies, and are partially explained by the unclassified quasar pairs and likely lenses presented in this work, which require deeper imaging. Of the 11 new reported projected quasar pairs, 5 have impact parameters below 10 kpc, almost tripling the number of such systems, which can probe the innermost regions of quasar host galaxies through absorption studies. We also report four new lensed galaxies discovered through our searches, with source redshifts ranging from 0.62 to 2.79. 
    more » « less
  9. The importance of alternative methods for measuring the Hubble constant, such as time-delay cosmography, is highlighted by the recent Hubble tension. It is paramount to thoroughly investigate and rule out systematic biases in all measurement methods before we can accept new physics as the source of this tension. In this study, we perform a check for systematic biases in the lens modelling procedure of time-delay cosmography by comparing independent and blind time-delay predictions of the system WGD 2038−4008 from two teams using two different software programs:GLEEandLENSTRONOMY. The predicted time delays from the two teams incorporate the stellar kinematics of the deflector and the external convergence from line-of-sight structures. The un-blinded time-delay predictions from the two teams agree within 1.2σ, implying that once the time delay is measured the inferred Hubble constant will also be mutually consistent. However, there is a ∼4σdiscrepancy between the power-law model slope and external shear, which is a significant discrepancy at the level of lens models before the stellar kinematics and the external convergence are incorporated. We identify the difference in the reconstructed point spread function (PSF) to be the source of this discrepancy. When the same reconstructed PSF was used by both teams, we achieved excellent agreement, within ∼0.6σ, indicating that potential systematics stemming from source reconstruction algorithms and investigator choices are well under control. We recommend that future studies supersample the PSF as needed and marginalize over multiple algorithms or realizations for the PSF reconstruction to mitigate the systematics associated with the PSF. A future study will measure the time delays of the system WGD 2038−4008 and infer the Hubble constant based on our mass models. 
    more » « less
  10. Time delay cosmography uses the arrival time delays between images in strong gravitational lenses to measure cosmological parameters, in particular the Hubble constant H 0 . The lens models used in time delay cosmography omit dark matter subhalos and line-of-sight halos because their effects are assumed to be negligible. We explicitly quantify this assumption by analyzing mock lens systems that include full populations of dark matter subhalos and line-of-sight halos, applying the same modeling assumptions used in the literature to infer H 0 . We base the mock lenses on six quadruply imaged quasars that have delivered measurements of the Hubble constant, and quantify the additional uncertainties and/or bias on a lens-by-lens basis. We show that omitting dark substructure does not bias inferences of H 0 . However, perturbations from substructure contribute an additional source of random uncertainty in the inferred value of H 0 that scales as the square root of the lensing volume divided by the longest time delay. This additional source of uncertainty, for which we provide a fitting function, ranges from 0.7 − 2.4%. It may need to be incorporated in the error budget as the precision of cosmographic inferences from single lenses improves, and it sets a precision limit on inferences from single lenses. 
    more » « less